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Abstract
Subwavelength semiconductor nanopatch lasers were analyzed, fabricated and characterized.
Lasing was achieved in cylindrical and rectangular metallodielectric nanopatch geometries.
The two smallest moderate quality factor modes of cylindrical cavities, the ‘electric-’ and
‘magnetic-’ dipole-like modes, successfully lased with physical volumes as small as
0.75 (λ0/n)3. Polarization control in nanopatch geometries is successfully demonstrated in
anisotropic rectangular nanopatch structures.

1. Introduction

Since the invention of lasers in the 1960s, many different types
of novel, interesting and useful coherent light sources have
been developed for countless applications. The invention of
semiconductor double heterostructures further propelled laser
technology by allowing the creation of electrically injected
lasers based on semiconductor materials [1]. Such lasers have
been used in many applications including telecommunications,
multimedia, sensing, etc. Recently, nanocavity lasers have
attracted immense interest in many scientific communities due
to their many potential applications in physics [2–4], imaging
[5], sensing [6–9], data storage [10], optical interconnects
[11–13], etc. For example, creating nanolasers capable of
transmitting information with ∼1 fJ bit−1 of energy at high data
rates will revolutionize current microprocessor technology
[12]. Photodetectors that are capable of detecting such low
powers with minimal energy consumption will need to be
developed as well [14, 15].

The march to the creation of nanolasers has spanned
many decades. Starting with the invention of the double
heterostructure laser [1], the field has progressed in creating
microcavity lasers such as vertical-cavity surface-emitting
lasers (VCSELs) [16, 17], microdisks [18, 19] and photonic
crystals [20, 21]. These cavities have succeeded in shrinking
electromagnetic mode volumes down to the diffraction limit.
Efforts to squeeze electromagnetic mode volumes down below
the diffraction limit require metal. Thus far, some metal-

based semiconductor lasers have been achieved by squeezing
the mode volume of light in only two of three dimensions
[22, 23]. Gold nanoparticles (∼40 nm) have also shown
stimulated emission using highly concentrated dye molecules
as optical gain materials [24], and room-temperature optically
pumped metallodielectric lasers have also been demonstrated
with physical sizes on the order of ∼1 μm3 [25]. These
metallodielectric lasers represent a great start to achieving
lasers with ultra-small mode volumes and physical sizes.

To be useful in optical interconnect applications, however,
the physical size of nanolasers will need to be reduced
further for highly dense integration with electronic transistors.
To reduce the physical and electromagnetic modal size
of nanocavities further, techniques used in the microwave
community can be borrowed. The microstrip resonator used
in antenna and filter applications provides a robust method
of creating high quality factor cavities [26]. The use of
patch cavities in the optical regime has been proposed and
theoretically studied by Manalatou and Rana [27]. The
paper focuses mainly on one cavity mode for this particular
cavity geometry. However, using higher order modes can be
beneficial in obtaining higher quality factors and engineering
radiation patterns.

In this paper, the authors aim to demonstrate a
versatile platform of realizing many different types of
metallodielectric lasers. The fabrication methods developed
can be extended for integration onto carrier substrates such as
complementary metal-oxide–semiconductor (CMOS) chips.
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Figure 1. A schematic of (a) circular and (b) rectangular nanopatch
cavities. Yellow regions represent gold and blue areas signify
InGaAsP semiconductor gain media. White variables represent the
coordinate system, and black variables represent cavity dimensions.

The metallodielectric cavities demonstrated include circular
and rectangular nanopatch cavities. Each cavity shape has its
own advantages, and they will be demonstrated throughout the
paper. The basic geometry of nanopatch cavities can be seen
in figure 1.

Because these lasers operate at near-infrared frequencies,
metal behaves more ideally than at visible wavelengths so that
plasmonic effects can be neglected and metals can be used
in traditional roles (with lower conductivity). Using these
metal-optic effects, lasing is achieved in two modes of the
cylindrical resonator [28] and one mode of the rectangular
nanopatch. Physical laser volumes as low as Vphys = 0.75
(λ0/n)3 are achieved [28].

2. Analysis of nanopatch cavities

2.1. Model for nanopatch cavities

Nanocavities with metal covering the top and bottom and
sidewalls exposed can be analyzed analytically using the
first-order Cohn model [29], although quality factors cannot
be obtained since the model assumes lossless metal. The
model is found to approximately predict how cylindrical and
rectangular nanocavities behave. In the model, the metal
is assumed to be a perfect electrical conductor (PEC) with
a variable skin depth associated with the amount of energy
present in the real metal for a specific eigenmode. The
semiconductor sidewall is assumed to be a perfect magnetic
conductor (PMC). This particular approximation is excellent
in the microwave regime, where dielectric constants can
be extremely high [30]. Even at optical frequencies, this
approximation can still yield good models for predicting the
eigenenergies for many eigenmodes of nanopatch cavities.

2.1.1. Analysis of cylindrical nanopatch cavities. Starting
from the Helmholtz equation, (∇2 + k2) �E = 0, a general
solution in cylindrical coordinates is obtained:

Er,ϕ,z(r, ϕ, z) =
∞∑

m=0

∞∑
p=0

[αmpJm(ηρ) + γmpYm(ηρ)]

× [cm cos(mϕ) + dm sin(mϕ)][fp e−pz + gp epz], (1)

where η2 = k2 + p2, k2 = ω2με, μ and ε are permeability
and permittivity, m is the azimuthal mode number, p is the
axial mode number (and eigenvalue), Jm is a Bessel function

of the first kind and Ym is a Bessel function of the second
kind. Transverse magnetic (TM) and transverse electric
(TE) solutions exist in nanopatch cavity structures. The
mode propagation direction is defined to be in the z-direction
(figure 1). The notation TMmnp and TEmnp can be used to
annotate a particular eigenmode for any cylindrical nanopatch,
where m, n and p represent the azimuthal, radial and axial mode
numbers, respectively. The fundamental mode is the TM110

mode. However, this mode is an extremely efficient radiator
and unsuitable for laser cavities. Thus, the next eigenmode,
the TM111 mode, will be referred to as the ‘fundamental’ mode
of the cylindrical nanopatch.

It is only necessary to solve for one field component
(Ez for TM modes and Hz for TE modes) since the others
can be obtained through Maxwell’s equations. Mode profiles
for the first two laser modes, TM111 [27] and TE011, are

TM111 :

⎧⎨
⎩

Ez = −E0J1
(
ηTM111ρ

)
cos

(
πz
h

)
sin(φ)

ηTM111 =
√(

2π/λTM111

)2 − (π/h)2

(2)

TE011 :

⎧⎨
⎩

Hz = H0η
2
TE011

J0
(
ηTE011ρ

)
sin

(
πz
h

)

ηTE011 =
√(

2π/λTM111

)2 − (π/h)2
,

where h is the height of the cavity, and only one of the
two degenerate TM111 modes is shown for simplicity. More
generally, the eigenvalue spectra for TM [27] and TE modes
in cylindrical cavities are

λTMmnp
= 2π

√
ε
(
(χ ′

mn/r)2 +
(
pπ

/(
h + 2TMmnp

))2)−1/2

(3)
λTEmnp

= 2π
√

ε
(
(χmn/r)2 +

(
pπ/

(
h + 2TEmnp

))2)−1/2
,

where ε is the material’s dielectric constant, χmn (χ ′
mn) is the

nth zero of the (derivative of the) mth Bessel function, p is
the axial mode number and mnp is the skin depth associated
with the mode’s energy into the metal. From these general
equations, dispersion relations relating cavity dimensions and
eigenenergies can be found. In figure 2, the dispersion relation
for different modes of cylindrical nanopatches is plotted. The
analytical model agrees well with simulated structures as long
as the height of cavities is tuned based on the ‘effective skin
depth’ associated with a particular mode. Experimentally,
only the TM111, TE011 and TM011 cavity modes are observed
(blue-shaded region), although the TM011 mode does not lase
due to its low quality factor. Higher order modes can be
obtained by designing thicker semiconductor layers and larger
radii cavities.

2.1.2. Analysis of rectangular nanopatch cavities.
Rectangular cavities behave similarly to cylindrical cavities,
except that the eigenenergies are obtained using the Helmholtz
equation in Cartesian coordinates. The modes of rectangular
cavities can be labeled as TMabc, where a, b and c represent
mode numbers associated with the length (l), width (w) and
height (h) of the cavity, respectively (figure 1). The TMa0c

mode has an electric field profile and eigenvalues:

TMa0c :

⎧⎪⎨
⎪⎩

Ez = E0 cos
(aπ

l
x
)

cos
(cπ

h
z
)

Ex = E0
acπ2

hlη2
sin

(aπ

l
x
)

sin
(cπ

h
z
) (4)
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Figure 2. The theoretical (solid line) and simulated (points) dispersion of various eigenmodes of cylindrical cavities is shown. Good
agreement is obtained between theory and simulation once effective skin depths are used. The shaded blue area represents the parameter
space observed experimentally.

λTMabc
= 2π

√
ε
(
(aπ/l)2 + (bπ/w)2

+
(
cπ/

(
h + 2TMabc

))2)1/2
, (5)

where η2 = μεω2
a0c – (cπ/h)2, TMabc

is the ‘effective skin
depth’ of the fundamental mode of the rectangular cavity and
only x-polarized mode profiles are shown for simplicity. TE
modes also exist in rectangular patch geometries; however,
only the fundamental TM mode of such cavities will be
shown. Rectangular cavities can be especially interesting
given that anisotropic devices can be used to control the
polarization of light that is emitted by a TM mode. Rectangular
cavities can also be used to resonantly pump nanopatch cavities
[31]. Since nanopatch cavities are subwavelength, pumping
schemes require the structure to be resonant at the pump
wavelength for efficient transfer of energy. The rectangular
cavity can be designed with anisotropy, so that one polarization
has a cavity resonance at the desired emission wavelength,
and the other polarization has a strong resonance at the pump
frequency. Resonant pumping schemes can drastically reduce
pump-induced heating by making the cavity couple more
efficiently to the excitation source.

2.2. Simulation of nanopatch cavities

Along with finding the eigenenergies of different cavity modes,
mode profiles were also simulated using two-dimensional
finite-element method (FEM) techniques [32]. The electric
and magnetic energy densities for various modes of cylindrical
cavities are shown in figure 3. Generally, the TM modes
have field lines that terminate in metal, causing large metal
absorption. These modes can be more clearly understood
as charge distributions in the metal that create certain mode
configurations. For example, the TM111 can be viewed as
two oscillating electric dipoles (‘electric-dipole-like’) in the
top metal patch and bottom ground plane. These dipoles
add constructively in the semiconductor region. In the far-
field, however, the two dipoles cancel in the vertical direction
because they are about one-half wavelength apart from each

other (due to the 220 nm of semiconductor between them) and
therefore create a good nanocavity. TE modes are magnetic
in nature, and have only azimuthal electric fields. These
modes can also be mapped to different current distributions
in the metal layers, causing differing amounts of radiation
and loss. The TE011 mode is called the ‘magnetic-dipole-like’
mode due to the azimuthal displacement current present in the
semiconductor.

The quality factors, confinement factor and mode
volume of each eigenmode were also simulated using finite
difference time domain (FDTD) simulations. Different
cavities were simulated with silver and gold as the
metal layers. The total (Qtot,Ag, Qtot,Au), radiation
(Qrad) and loss (Qabs,Ag, Qabs,Au) quality factors are
calculated for each metal. The confinement factor
� = ∫

gainε(r)|E(r)|2d3r/
∫

allε(r)|E(r)|2d3r and normalized
electromagnetic mode volume Vn = Vmode/(λ0/n)3 (where
Vmode = ∫

ε(r)|E(r)|2d3r/max(ε(r)|E(r)|2) are also found for
each eigenmode. A summary of the above figures of merit
is shown in table 1 for cylindrical cavity eigenmodes. The
TM111 and TM012 modes have the highest radiation quality
factors and can be extremely good laser cavities if silver is
used. The TE modes radiate well, and the efficiency of these
modes can also be good since the absorption and radiation
quality factors are well matched. Also, in general, TM modes
with odd parity (m = 1) have the smallest mode volumes, and
TE modes have the largest mode volumes.

3. Fabrication methods

Metallodielectric nanocavities present a unique fabrication
challenge. At the nanoscale, surface recombination
in semiconductors becomes a dominant recombination
mechanism, reducing laser efficiency. Furthermore, metal–
semiconductor integration presents another loss mechanism.
Mindful of the effects of surface recombination on nanocavity
laser performance, the best material with a bandgap in the
near-infrared is the InxGa1−xAsyP1−y quaternary material

3
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Figure 3. Magnetic (left) and electric (right) energy densities of various eigenmodes of cylindrical nanopatch cavities are shown. The first
row shows modes with odd parity (m = 1), the second and third rows shows modes with no angular dependence (m = 0). The first two rows
show TM modes while the second row shows TE modes. Each mode profile is labeled according to the mode it represents.

Table 1. Summary of pertinent cavity parameters for various
eigenmodes of cylindrical nanopatches.

TM111 TM112 TM121 TM021 TM012 TE011 TE012

Qtot,Ag 250 350 116 155 460 143 240
Qtot,Au 65 120 61 62 128 80 128
Qrad 1600 500 167 298 3000 205 325
Qabs,Ag 295 100 380 323 540 473 917
Qabs,Au 68 150 96 78 133 131 211
� 0.84 0.93 0.62 0.70 0.90 0.89 0.95
Vn 0.067 0.146 0.169 0.081 0.8 0.374 0.875

system, which has a surface recombination velocity vs ∼ 2 ×
104 cm s−1 [33] (roughly two orders of magnitude slower
than GaAs systems). InxGa1−xAsyP1−y can also have high-
energy barriers to confine carriers and prevent thermalization
into metal. In this paper, a very thin layer of titanium
dioxide was used to prevent carrier recombination in metal
layers. However, the thickness of this dielectric can have
significant impacts on device performance. If the oxide
is too thick, the confinement factor of the eigenmode is
reduced and more gain is required to initiate lasing. If
the dielectric is too thin, then carriers can tunnel through
the dielectric, degrading photoluminescence and the laser’s
efficiency. After careful study into optimum dielectric design,
5 nm of titanium oxide was chosen to maximize the mode
confinement factor, although efficiency is reduced. The
dependence of semiconductor photoluminescence on oxide
thickness can be seen in figure 4. In the future, large bandgap
semiconductors will be used instead of oxide to confine
carriers, enabling electrical injection.

The nanolasers were fabricated using a process that can
be compatible with integration onto silicon substrates for
applications in optical interconnect technology. In summary,
oxide and metal are evaporated onto the epitaxial layer, the

1300 1350 1400 1450 1500 1550 1600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Wavelength (nm)

In
te

n
s
it

y
 (

a
.u

.)

No Gold

15 nm TiO2

10 nm TiO2

5 nm TiO2

Figure 4. The dependence of photoluminescence (PL) from a
220 nm thick epitaxial layer of InGaAsP with varying thicknesses of
titanium dioxide between semiconductor and gold is shown. The
data were taken after step (d) in the fabrication process shown in
figure 5 at room temperature under pulsed (100 ns, 20 kHz
repetition rate) and high-power pumping conditions. The reason for
the anomalous PL present at 1400 nm was not studied, although
Fabry–Pérot resonances in the thin film structure that was probed
could cause such enhancement. The PL degrades as the oxide
thickness decreases, signifying that carriers are tunneling into the
metal from the semiconductor. At 15 nm of TiO2, the peak PL
reaches nearly the same intensity as a semiconductor layer without
any metal present.

substrate is then flipped upside down and bonded to another
carrier, mechanical grinding and wet etching techniques are
used to remove the backside, the sample is patterned using
electron-beam lithography and liftoff, and the semiconductor
is finally etched using reactive ion etching (figure 5). Scanning
electron micrographs of nanopatch cavities can also be seen in
figure 6. More details of the fabrication process can be found
elsewhere [28].
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Figure 5. Side view of a typical fabrication flow for creating nanopatch cavity lasers.
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Figure 6. Scanning electron micrographs of fabricated nanopatch
lasers after reactive ion etching. Perspective views (65◦ tilt) of
cylindrical and rectangular nanopatches are seen in (a) and (b),
respectively.

4. Results and discussion

The semiconductor nanolasers were measured and
characterized using a micro-photoluminescence setup
with a pulsed (100 ns, 5 kHz repetition rate) 1064 nm
pump laser (more details can be found elsewhere [28]). The
lasers were probed using optical pumping at 77 Kelvin.
Rate equations from Coldren and Corzine [34] were used
to analyze the pump-dependent power output (L–L curve)
relationship of the devices. In these nanocavities, the effects
of spontaneous emission are also modeled. The increase in
the speed of spontaneous emission is quantified by the Purcell
factor (F = (16/π2)Q/Vn), and the fraction of spontaneous
emission that is coupled to the laser mode is called β.

Lasing from multiple modes of nanopatch cavities is
observed. Since the height of the cavities is fixed at 220 nm
(due to the epiwafer that was used), lasing is observed from
TM111 and TE011 modes for cylindrical geometries and TM011

and TM101 modes for rectangular geometries. Experimentally,
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Figure 7. The dependence of cavity geometry on resonance
wavelength is shown. For cylindrical (rectangular) cavities, the
horizontal axis represents cavity radius (half-width). The
blue-shaded region indicates the gain bandwidth of the
semiconductor where lasing is observed. Dots represent
experimental data.

the dependence of resonance wavelength on size agrees well
with theory as seen in figure 7. With other cavity heights, it
will be possible to see laser emission from even higher order
cavity modes, such as the ones theorized and simulated in
figure 2. Again, different mode configurations can lead to
different applications since far-field patterns for each mode
are different.

In cylindrical geometries, the TM111 mode is of great
interest, since it represents a laser mode with a sub-diffraction
limited mode and physical volumes (Vn = 0.067, Vphys =
0.75). This so-called electric dipole mode is also the most
fundamental moderate quality factor mode in a cylindrical
nanopatch laser. Experimentally, the quality factor is
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Figure 8. Pump-dependent spectra are shown in linear- and log-scale (inset) for the (a) TM111 and (b) TE011 cylindrical cavity modes. The
linewidths measured are resolution limited (2 nm resolution bandwidth) above threshold. Linear scale spectra from the two modes after
threshold are seen in (c). Pump-dependent power outputs of nanopatch lasers are seen in (d) and (e) where rate equation modeled L–L
curves are overlaid; Fβ = 5 and Fβ = 0.5 curves are also shown for comparison to the best-fitted model for each mode.
Polarization-dependent near field images of each mode confirm each mode’s identity, with the TM111 mode being linearly polarized, and the
TE011 mode being azimuthally polarized.

measured to be Qexp = 132. The TM111 mode has surface
normal light emission, much like a VCSEL, and is linearly
polarized due to its odd parity. The TE011 mode, also called
the ‘magnetic dipole’ mode since the electric field lines only
have an azimuthal component, also lases. The magnetic mode
has a larger mode volume and physical size (Vn = 0.375,
Vphys = 1.25) compared to the TM111 mode. Experimentally,
the quality factor is measured to be Qexp = 168. It emits most
of its radiation parallel to the gold ground plane, making it very
useful for integration into nanophotonic circuits. Temperature-
dependent quality factors suggest that metal loss is reduced at
low temperatures [22]. Large coupling of Purcell-enhanced
spontaneous emission is also observed in both modes. Purcell
factors for the TM111 and TE011 modes were calculated to be
F ∼ 50 and F ∼ 11, respectively. The L–L curves obtained
experimentally were fit best with theory using Fβ factors of
Fβ = 1.1 and Fβ = 1.2 for the TM111 and TE011 modes,
respectively (figure 8). Thus, the fraction of spontaneous
emission coupled to the laser mode, β, was calculated to be
β = 0.022 and β = 0.105 for the TM111 and TE011 modes,
respectively. Data taken from cylindrical nanopatch lasers are
summarized in figure 8.

Rectangular nanopatches also show lasing action.
Two non-degenerate modes with ‘electric-dipole-like’ mode
profiles are seen if the rectangle is anisotropic (the length is
different from the width of the cavity). These devices also
have vertical radiation emission. These modes eventually
become degenerate as the anisotropy between the length and
the width is reduced (figure 9). Between the two modes,
the higher energy mode always lases since higher gain can

be achieved at higher energies due to a larger density of
states. A plot of the mode spacing versus anisotropy ratio
is seen in figure 9(f ). There is an overall red shift in
cavity resonances only because the cavities probed had larger
dimensions at lower anisotropy. The spectra recorded in figure
9 are slightly above lasing threshold so that both modes can
be seen clearly. At larger pumping powers, the higher energy
mode becomes the dominant mode, and spontaneous emission
becomes clamped.

To verify that the two modes seen in figure 9 were
‘electric-dipole-like,’ the polarization dependence of the two
modes was studied. The two modes under study are the TM011

and the TM101 modes, which have orthogonal polarizations.
They should also be linearly polarized, since the radiation can
be thought of as coming from two electric dipoles in the metal
layers of the cavity structure. In figure 10, an anisotropic
rectangular nanopatch is probed with a linear polarizer below
laser threshold. As the polarizer is rotated through 180◦, only
one of the two modes is seen if the polarization is horizontal or
vertical to the rectangle (figures 10(a) and (c), respectively).
At diagonal polarizations, both modes appear (figures 10(b)
and (d)). Thus, each mode is strongly linearly polarized.
Since these modes are the fundamental moderate quality
factor modes of rectangular cavities, they are useful for ultra-
small laser designs. Unlike circular nanopatches, however,
the polarization of the cavity can be controlled with great
precision. Control over polarization in nanocavities can lead
to many different applications including display technologies
and quantum information processing.
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Figure 9. Nearly lasing spectra for rectangular patches with different anisotropy ratios are shown. The anisotropy ratio is reduced in order
from (a) to (e). The yellow rectangles in the corner of each graph signify the top view of each rectangular nanopatch cavity, where the
anisotropy has been exaggerated for clarity. The mode separation and wavelength versus anisotropy ratio is seen in (f ).
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Figure 10. The two distinct resonances of an anisotropic rectangular cavity are shown below lasing threshold to have orthogonal
polarizations. The yellow square represents the geometry of the cavity in the x–y plane. The arrows represent the approximate polarization
of the spectrum shown in each viewgraph, therefore graphs (b) and (d) have slightly different peak heights.

5. Conclusion

Nanopatch lasers of varying geometries were analyzed,
simulated, fabricated and characterized. These lasers operate
at near-infrared wavelengths and can be smaller than the
diffraction limit in both modal and physical volumes. Using
metallodielectric cavities at optical frequencies, radiation can

be suppressed compared to purely dielectric cavities of similar

dimensions. Although loss is incurred with the presence

of metal, using silver should help mitigate these problems.

These lasers can also serve as attractive devices to investigate

phenomena related to strong light–matter interactions. More

importantly, however, they are physically small and easily

7
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adaptable to electrical injection, making them attractive
candidates for future integration onto silicon electronics.
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